Year 8 Knowledge Organiser REARRANGE AND SOLVE EQUATIONS

Key Concepts Solving equations: Working with inverse operations to find the value of a variable. Rearranging an equation:	For each step in solving an equation we must do the inverse operation	Solve: 5(x-3) = 20 Expand 5x - 15 = 20 +15 $+155x = 35\div 5 \div 5x = 7$	Examples Rearrange to make <i>r</i> the subject of the formulae : $Q = \frac{2r-7}{3}$ ×3 ×
Working with inverse operations to isolate a highlighted variable. In solving and rearranging we undo the operations starting from the last one.	Solve: 12 = 3x - 18 +18 $+1830= 3x\div 3 \div 3x = 10$	Solve: 7p-5 = 3p + 3 -3p $-3p4p-5 = 3+5$ $+54p = 8\div 2 \div 2p = 2$	3 $3Q = 2r - 7$ $+7 \qquad +7$ $3Q + 7 = 2r$ $\div 2 \qquad \div 2$ $\frac{3Q + 7}{2} = r$
A hegartymaths 177-186, 280-284, 287	Solve 2) Solv	y = 4x - 12 = 28 sub y = 4x - 12 = 2x + 20 $y = 2x + 20$	Rearrange to make x the ject: $= \frac{3x + 4}{2}$ $= x$ ($\varepsilon = x$ ($\tau : s = x = x$)

Year 8 Knowledge Organiser EXPAND AND SIMPLIFY BRACKETS

Key Concepts

Expanding brackets

Single: Where each term inside the bracket is multiplied by the term on the outside of the bracket. Double: Where each term in the first bracket is multiplied by all terms in the second bracket.

Factorising expressions

Putting an expression back into brackets. To "factorise fully" means take out the HCF.

Difference of two squares

When two brackets are repeated with the exception of a sign change. All numbers in the original expression will be square numbers.

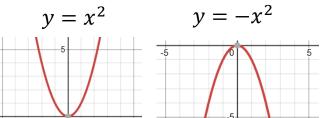
A hegartymaths 160, 162-164, 168-169, 223-228, 230-234

1) 7 $(3 + a) = 21$ 2) 2 $(5 + a) + 3(2)$	(2 + a) = 10 + 2a + 6 + 3a = 5a + 16 (2 + 2)	Exp 1) 2)	$(p+2)^2$ (p+2)(p+2) $= n^2 + 2n + 2n + 4$	Factorise: 3) $x^2 - 2x - 3$ = (x - 3)(x + 1) Factorise and solve: 4) $x^2 + 4x - 5 = 0$ (x - 1)(x + 5) = 0 Therefore the solutions are: Either $x - 1 = 0$ x = 1 Or $x + 5 = 0$ x = -5
Key Words Expand Factorise Simplify Product Solve1) Expand and simplify (a) $3(2 - 7f)$ (b) $5(m - 2) + 6$ (c) $3(4 + t) + 2(5 + t)$ 1) Expand and simplify (a) $3(2 - 7f)$ (b) $9t - 3p$ (c) $4d^2 - 2d$ 2) Factorise (a) $6m + 12t$ (b) $9t - 3p$ (c) $4d^2 - 2d$ 3) Expand $(5g - 4)(2g + 1)$ 4) (a) Factorise $x^2 - 8x + 15$ (b) Factorise and solve $x^2 + 7x + 10 = 0$ $\varsigma - x$ so $\zeta - x$ (q) $(\varsigma - x)(\varepsilon - x) (\varepsilon)$ (the thermal sector ε (thermal sector ε) $-p_Z)p_Z(s)$ $(d - 1\varepsilon)\varepsilon$ (q) $(1z + w)g(\varepsilon)$ (z) $1 + z = x$ (z)				

Year 8 Knowledge Organiser QUADRATIC GRAPHS

Key Concepts

A quadratic graph will always be in the shape of a parabola.



The roots of a quadratic graph are where the graph crosses the *x* axis. The roots are the solutions to the equation.

key We Quadra 251-256 Linterce Turning Line of syn

