## Year 8 Knowledge Organiser REARRANGE AND SOLVE EQUATIONS

## Key Concepts

## Solving equations:

Working with inverse operations to find the value of a variable.

Rearranging an equation:
Working with inverse
operations to isolate a highlighted variable.

In solving and rearranging we undo the operations starting from the last one.

| For each step in solving an equation we must do the inverse operation |  |
| :---: | :---: |
| Solve: |  |
| $12=3 x-18$ |  |
| +18 | +18 |
|  | 30 |
| $=3 x$ |  |
| $\div 3$ | $\div 3$ |
| $x=10$ |  |

## Solve:

| $\begin{gathered} 5(x-3)=20 \\ \text { Expand } \\ 5 x-15=20 \end{gathered}$ |  |
| :---: | :---: |
| +15 | +15 |
| $5 x=35$ |  |
| $\div 5$ | $\div 5$ |
| $x=7$ |  |
| Solve: |  |
| $7 p-5=3 p+3$ |  |
| -3p | -3p |
| $4 \mathrm{p}-5=3$ |  |
| +5 | +5 |
| $\begin{aligned} & \div 2 \quad 4 p=8 \\ & p=2\end{aligned}$ |  |
|  |  |
|  |  |

## Examples

Rearrange to make $r$ the subject of the formulae :

$$
Q=\frac{2 r-7}{3}
$$

```
3
3
```

\[

\]

hegartymaths 177-186, 280-284, 287

Key Words Solve
Rearrange Term Inverse operation

1) Solve $7(x+2)=35$
2) Solve $4 x-12=28$
3) Solve $4 x-12=2 x+20$
4) Rearrange to make $x$ the subject:

$$
y=\frac{3 x+4}{2}
$$

$$
\frac{\varepsilon}{\forall-\kappa z}=x \text { ( } \quad 9 L=x \quad(\varepsilon \quad 0 \tau=x \quad(乙 \quad \varepsilon=x \quad \text { ( }: \text { SyヨMSN } \forall
$$

## Year 8 Knowledge Organiser EXPAND AND SIMPLIFY BRACKETS

## Key Concepts

## Expanding brackets

Single: Where each term inside the bracket is multiplied by the term on the outside of the bracket. Double: Where each term in the first bracket is multiplied by all terms in the second bracket.

## Factorising expressions

Putting an expression back into brackets. To "factorise fully" means take out the HCF.

## Difference of two squares

When two brackets are repeated with the exception of a sign change. All numbers in the original expression will be square numbers.

## Examples

## Linear expressions

Expand and simplify where appropriate

1) $7(3+a)=21+7 a$
2) $2(5+a)+3(2+a)=10+2 a+6+3 a$ ( ) $=5 a+16$
3) Factorise $9 x+18=9(x+2)$
4) Factorise $6 e^{2}-3 e=3 e(2 e-1)$

## Quadratic expressions

Expand and simplify:
1)

$$
\begin{aligned}
& (p+2)(2 p-1) \\
= & 2 p^{2}+4 p-p-2 \\
= & 2 p^{2}+3 p-2
\end{aligned}
$$

2) $(p+2)^{2}$


Factorise:
3) $x^{2}-2 x-3$
$=(x-3)(x+1)$

Factorise and solve:

$$
\text { 4) } \begin{aligned}
& x^{2}+4 x-5=0 \\
& \quad(x-1)(x+5)=0
\end{aligned}
$$

Therefore the solutions are:
Either $x-1=0$
$x=1$
Or $x+5=0$
$x=-5$

## 崀 hegartymaths

 160, 162-164, 168169, 223-228, 230-234
## Key Words

 Expand Factorise Simplify Product Solve1) Expand and simplify (a) 3(2-7f)
(b) $5(m-2)+6(c) 3(4+t)+2(5+t)$
2) Factorise
(a) $6 m+12 t$
(b) $9 t-3 p$
(c) $4 d^{2}-2 d$
3) Expand $(5 g-4)(2 g+1)$
4) (a) Factorise $x^{2}-8 x+15$ (b) Factorise and solve $x^{2}+7 x+10=0$

$-p z) p z(\partial)(d-1 \varepsilon) \varepsilon(q)(+Z+m) 9(e)(z$

## Year 8 Knowledge Organiser QUADRATIC GRAPHS

## Key Concepts

A quadratic graph will always be in the shape of a parabola.

$$
y=x^{2}
$$

$$
y=-x^{2}
$$




The roots of a quadratic graph are where the graph crosses the $x$ axis. The roots are the solutions to the equation.


## Examples

$$
y=x^{2}+2 x-8
$$

A quadratic equation can be solved from its graph.
The roots of the graph tell us the possible solutions for the equation.
There can be 1 root, 2 roots or no roots for a quadratic equation. This is dependant on how many times the graph crosses the $x$ axis.

Roots $x=-4$
$x=2$
$y$ intercept $=-8$

官 hegartymaths
251-256

## Key Words

Quadratic Roots Intercept
Turning point Line of symmetry


Identify from the graph of $y=x^{2}+4 x+3$ :

1) The line of symmetry
2) The turning point
3) The $y$ intercept
4) The two roots of the equation
