Year 8 Knowledge Organiser UNDERSTANDING PERCENTAGES and FRACTIONS

Key Concept
FDP equivalence

\mathbf{F}	\mathbf{D}	\mathbf{P}
$\frac{1}{100}$	0.01	1%
$\frac{1}{10}$	0.1	10%
$\frac{1}{5}$	0.2	20%
$\frac{1}{4}$	0.25	25%
$\frac{1}{2}$	0.5	50%
$\frac{3}{4}$	0.75	75%

穴 hegartymaths Clip Numbers 52-55, 73-83, 97

Key Words

Fraction: A fraction is made up of a numerator (top) and a denominator (bottom).
Integer: Whole number.
Ascending Order:
Place in order, smallest to largest.
Descending Order:
Place in order, largest to smallest.

Tip

- A larger denominator does not mean a larger fraction.
- To find equivalent
fractions multiply/divide the numerator and denominator by the same number.

Examples

Questions

1) Place these lists in ascending order.
a) $\frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \frac{7}{12}$
b) $\frac{3}{7}, \frac{1}{2}, 0.49,0.2$
c) $\frac{7}{32}, 25 \%, 0.05, \frac{29}{100}$

$\frac{9}{\mathrm{~s}} \cdot \frac{\downarrow}{\varepsilon} \times \frac{\varepsilon}{z} \times \frac{z \tau}{L}(\tau$
Sy $\exists M S N \forall$

Year 8 Knowledge Organiser FRACTIONS \& PERCENTAGES AS OPERATORS

Key Concept Multipliers	
Find 15\% $\times 0.15$ Increase by 15\% $\times 1.15$ Decrease by 15\% $\times 0.85$	

For reverse percentage problems you can divide by the multiplier to find the original amount.

hegartymaths

Clip Numbers 77, 84-89, 96

Key Words

Percentage: Is a

 proportion that shows a number as parts per hundred.Fraction: A fraction is made up of a numerator (top) and a denominator (bottom).
Multiplier: A quantity by which a given number is to be multiplied.

Tip

There is a \% function on your calculator.

To find 25% of 14 on a calculator:
2, 5, SHIFT, (, $\times, 1,4$, =

Examples

Non-Calculator

$$
\frac{3}{4} \text { of } 32=32 \div 4 \times 3=24
$$

$$
\begin{aligned}
16 \% \text { of } 240 \quad 10 \% & =24 \\
5 \% & =12 \\
1 \% & =2.4
\end{aligned} \quad \begin{aligned}
& =24+12+2.4 \\
& =38.4
\end{aligned}
$$

Calculator

Find 32% of $54.60=0.32 \times 54.60=17.472$

Increase 45 by $12 \%=45 \times 1.12=50.4$

Questions

1) Find these fractions of amounts:
a) $\frac{1}{3}$ of 15
a) $\frac{1}{5}$ of 65
a) $\frac{2}{7}$ of 14
a) $\frac{4}{9}$ of 45
2) a) 35% of 140
b) 21% of 360
c) Increase 60 by 15\%

Year 8 Knowledge Organiser FRACTIONS, DECIMALS AND PERCENTAGES

Key Concepts

A fraction is a numerical quantity that is not a whole number.

A decimal is a number written using a system of counting based on the number 10 .

A percentage is an amount out of 100 .

穴 hegartymaths 73-76, 82-83

Examples

Order the following in ascending order:

1) Convert the following into percentages:
a) 0.4
b) 0.08
c) $\frac{6}{20}$
d) $\frac{3}{25}$
2) Compare and order the following in ascending order:

$$
\begin{array}{lllll}
\frac{3}{4} & 76 \% & 0.72 & \frac{4}{5} & 0.706
\end{array}
$$

Division
Multiply

Year 8 Knowledge Organiser FRACTIONS

Key Concepts
 $\frac{x}{y} \rightarrow \frac{\text { Denominator }}{\text { Numerator }}$

Equivalent fractions have the same value as one another.
Eg. $\frac{1}{4}=\frac{2}{8}=\frac{3}{12}$

Calculate $\frac{4}{5}$ of 65 :

Examples

Order these fractions in ascending order:

To be able to compare fractions we must have a common denominator

宫 hegartymaths
61, 63-70

Key Words
Fraction
Equivalent
Reciprocal
Numerator
Denominator

1) Calculate $\frac{2}{7}$ of 56 .
2) $\frac{3}{8}$ of a number is 36 , what is the original number?
3) Order the following in ascending order: $\quad \frac{2}{3} \quad \frac{5}{6} \quad \frac{3}{8} \quad \frac{7}{12}$

Year 8 Knowledge Organiser 4 OPERATIONS WITH FRACTIONS

Key Concepts

An improper fraction is when the numerator is larger than the
denominator e.g. $\frac{20}{12}$

Converting from a mixed number

 into an improper fraction:$2 \frac{3}{5}=\frac{(2 \times 5)+3}{5}=\frac{13}{5}$

A reciprocal is the value that when multiplied by another gives the answer of 1.
Eg. $\frac{1}{8}$ is the reciprocal of 8 .
$\frac{2}{5}$ is the reciprocal of $\frac{5}{2}$
定 hegartymaths
61, 63-70

$$
\begin{aligned}
& 1 \frac{2}{3}+2 \frac{1}{4} \\
& =\frac{5}{3}+\frac{9}{4} \underset{\substack{\text { Convert into an } \\
\text { improper fraction }}}{ }=\frac{8}{3}-\frac{5}{4}-1 \frac{1}{4} \\
& =\frac{20}{12}+\frac{27}{12} \underset{\substack{\text { Find a common } \\
\text { denominator }}}{ }=\frac{32}{12}-\frac{15}{12} \\
& =\frac{47}{12} \quad=\frac{17}{12} \\
& =3 \frac{11}{12} \xrightarrow[\substack{\text { Convert back into } \\
\text { a mixed number }}]{\longleftrightarrow}=1 \frac{5}{12}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \frac{1}{3} \div 1 \frac{3}{5} \\
& =\frac{7}{3} \div \frac{8}{5} \quad \begin{array}{c}
\text { Find the reciprocal } \\
\text { of the second fraction.. }
\end{array} \\
& =\frac{7}{3} \times \frac{5}{8} \quad \text {...and multiply } \\
& =\frac{35}{24} \\
& =1 \frac{11}{24} \quad \text { Examples }
\end{aligned}
$$

Key Words
Fraction
Equivalent
Reciprocal
Numerator
Denominator
Improper/Top heavy
Mixed number

Calculate:

1) $1 \frac{2}{3}+2 \frac{3}{4}$
2) $3 \frac{1}{5} \times 1 \frac{2}{3}$
3) $3 \frac{3}{4}-1 \frac{1}{3}$
4) $1 \frac{3}{5} \div 2 \frac{7}{10}$
5) 9

What is the reciprocal of:

Year 8 Knowledge Organiser PERCENTAGES

Key Concepts

Calculating percentages of an amount without a calculator:
10% = divide the value by 10
1% = divide the value by 100
Calculating percentages of an amount with a calculator:

Amount \times percentage as a decimal

Calculating percentage increase/decrease:

Amount $\times(1 \pm$ percentage as a decimal)

hegartymaths

Calculating a percentage - non calculator:

Calculate 32% of 500 g :

$$
\begin{array}{lr}
10 \% \rightarrow 500 \div 10=50 \\
30 \% \rightarrow 50 \times 3=150 \\
1 \% \rightarrow 500 \div 100=5 \\
2 \% \rightarrow 5 \times 2=10 & \mathbf{3 2 \%}=\mathbf{1 5 0}+\mathbf{1 0} \\
=160 \mathrm{~g}
\end{array}
$$

Calculating a percentage - calculator:

Calculate 32% of 500g:

Value $\times($ percentage $\div 100)$
$=500 \times 0.32$
$=160 \mathrm{~g}$

Key Words
Percent Increase/decrease

Appreciate
Depreciate
Multiplier
Divide
4a) Decrease $£ 500$ by 6%
b) Increase 65 g by 24%
c) Increase 70 m by 8.5%

Percentage change:

Examples

A dress is reduced in price by 35% from $£ 80$. What is it’s new price?

Value $\times(1$

- percentage as a decimal)
$=80 \times(1-0.35)$
$=£ 52$

A house price appreciates by 8% in a year. It originally costs $£ 120,000$, what is the new value of the house?

```
Value \(\times\) (1
+ percentage as a decimal)
```

$=120000 \times(1+008)$

1) Write the following as à fiecimal multiplier: a) 45% b) 3% c) 2.7%
2) Calculate 43% of 600 without using a calculator
3) Calculate 72% of 450 using a calculator

Year 8 Knowledge Organiser PERCENTAGES AND INTEREST

Key Concepts

Calculating percentages of an amount without a calculator:
10% = divide the value by 10
1% = divide the value by 100

Per annum is often used in monetary questions meaning per year.

Depreciation means that the value of something is going down or reducing.

Simple interest:

Joe invest $£ 400$ into a bank account that pays 3% simple interest per annum.
Calculate how much money will be in the bank account after 4 years.
$3 \%=£ 4 \times 3$
= $£ 12$
4 years $=£ 12 \times 4$
Interest = $£ 48$
Total in bank account $=£ 400+£ 48$
= £448

Examples

Compound interest:

Joe invest $£ 400$ into a bank account that pays 3\% compound interest per annum.
Calculate how much money will be in the bank account after 4 years.

Value $\times(1 \pm \text { percentage as a decimal })^{\text {years }}$
$=400 \times(1+0.03)^{4}$
$=400 \times(1.03)^{4}$
$=£ 450.20$

Key Words Percent Depreciate Interest Annum Simple
Compound
Multiplier

1) Calculate a) 32% of 48 b) 18% of 26
2) Kane invests $£ 350$ into a bank account that pays out simple interest of 6%. How much will be in the bank account after 3 years?
3) Jane invests $£ 670$ into a bank account that pays out 4% compound interest per annum. How much will be in the bank account after 2 years?
