Year 9

POWERS AND ROOTS

戻hegartymaths
Clip Numbers
27－30，99－101

Key Words

Square：A square number is the result of multiplying a number by itself．
Cube：A cube number is the result of multiplying a number by itself twice．
Root：A root is the
reverse of a power．
Prime number：A prime is a number that has only two factors which are 1 and itself．
Reciprocal：This is
found by doing 1 divided by the number．
Factor：A number that fits into another number exactly．

Tip

A number with an odd amount of factors must be a square number．

Examples

What is 2^{4} ？
What is $\sqrt{64}$ ？

What is the reciprocal of 5 ？

$$
8^{2}=64, \text { so } \sqrt{64}= \pm 8
$$

Write 36 as a product of prime factors

Questions
1）a） 2^{5}
b） 3^{3}
c） 1^{17}
d）$\sqrt{81}$
e）$\sqrt{16}$
f）$\sqrt[3]{64}$

2）Find the reciprocal of：
a） 4
b）$\frac{1}{3}$
c） 0.25
3）Write 72 as a product of primes．

${ }_{z} \varepsilon \times{ }_{\varepsilon} Z$（ ε			$\square 0$	$\varepsilon(q$		
$\dagger(t$	† \ddagger	$6 \mp(p$	［ 0	Ľ（q	てと ${ }^{\text {e（ }}$	：Sy j MSN

Year 9

INDICES AND ROOTS

Key Concepts
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$\left(a^{m}\right)^{n}=a^{m n}$
$a^{\frac{1}{n}}=\sqrt[n]{a}$
$a^{-m}=\frac{1}{a^{m}}$

Examples

Simplify each of the following:

1) $a^{6} \times a^{4}=a^{6+4}$
2) $\begin{aligned}\left(3 a^{4}\right)^{3} & =3^{3} a^{4 \times 3} \\ & =27 a^{12}\end{aligned}$
3) $a^{\frac{1}{2}}=\sqrt{a}$
$=a^{10}$

$$
=27 a^{12}
$$

7) $9^{\frac{1}{2}}=\sqrt{9}$
8) $a^{6} \div a^{4}=a^{6-4}$
9) $\frac{5^{2} \times 5^{6}}{5^{4}}=\frac{5^{8}}{5^{4}}$
$=3$ or -3
10) $\left(a^{6}\right)^{4}=a^{6 \times 4}$
$=5^{8-4}$

$$
=3 \text { or }-3
$$

$=a^{24}$
$=5^{4}$
8) $2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$

关 hegartymaths
102-110

Key Words

Powers
Roots Indices Reciprocal

Simplify:

1) $a^{3} \times a^{2}$
2) $b^{4} \times b$
3) $d^{-5} \times d^{-1}$
4) $m^{6} \div m^{2}$
5) $n^{4} \div n^{4}$
6) $\frac{8^{4} \times 8^{5}}{8^{6}}$
7) $\frac{4^{9} \times 4}{4^{3}}$
8) $\left(3^{2}\right)^{5}$
9) $81^{\frac{1}{2}}$
10) 5^{-2}

Year 9

CALCULATIONS, CHECKING AND ROUNDING

Key Concepts

A value of 5 to 9 rounds the number up.

A value of 0 to 4 keeps the number the same.

Estimation is a result of rounding to one significant figure.

Examples

Round 3.527 to:
a) 1 decimal place

$$
3.527 \longrightarrow 3.5
$$

Estimate the answer to the following calculation:

$$
\frac{46.2-9.85}{\sqrt{16.3+5.42}}
$$

b) 2 decimal places

$$
3.527 \longrightarrow 3.53
$$

$$
\frac{50-10}{\sqrt{20+5}}
$$

c) 1 significant figure

$$
3.527 \longrightarrow 4
$$

穴 hegartymaths
17,
56,
130

Key Words
Integers
Operation
Negative Significant figures
Estimate
Round the following numbers to the given degree of accuracy

A)	(1 d.p.)	2) 0.0568	(2 d.p.)
1)	14.1732		
B)	Estimate:		
1)	$\sqrt{4.09 \times 8.96}$	2) $25.76-\sqrt{4.09 \times 8.96}$	
3) $\sqrt[3]{26.64}+\sqrt{80.7}$	4) $\frac{\sqrt{6.91 \times 9.23}}{3.9^{2} \div 2.02^{3}}$		

Year 9

STANDARD FORM

Key Concepts

We use standard form to write a very large or a very small number in scientific form.

Must be $\times 10$

Must be $1 \leq a<10$

Examples

1) $3000=3 \times 10^{3}$
2) $4580000=4.58 \times 10^{6}$
3) $0.0006=6 \times 10^{-4}$
4) $0.00845=8.45 \times 10^{-3}$

Write the following in standard form:

Calculate the following, write your answer in standard form:

1) $\left(3 \times 10^{3}\right) \times\left(5 \times 10^{2}\right)$

$$
\left.\begin{array}{l}
3 \times 5=15 \\
10^{3} \times 10^{2}=10^{5}
\end{array}\right\} \begin{gathered}
15 \times 10^{5} \\
=1.5 \times 10^{6}
\end{gathered}
$$

2) $\left(8 \times 10^{7}\right) \div\left(16 \times 10^{3}\right)$

$$
(0 \times 10) \div(10 \times 10)
$$

$$
\left.\begin{array}{l}
8 \div 16=0.5 \\
10^{7} \div 10^{3}=10^{4}
\end{array}\right\}=\begin{aligned}
& 0.5 \times 10^{4} \\
& =5 \times 10^{3}
\end{aligned}
$$

Key Words

Standard form
Base 10

121-129

户 hegartymaths

A) Write the following in standard form:
$\begin{array}{llll}\text { 1) } \quad 74000 & \text { 2) } 1042000 & \text { 3) } 0.009 & \text { 4) } 0.00000124\end{array}$
B) Work out:

1) $\left(5 \times 10^{2}\right) \times\left(2 \times 10^{5}\right) \quad$ 2) $\left(4 \times 10^{3}\right) \times\left(3 \times 10^{8}\right)$
2) $\left(8 \times 10^{6}\right) \div\left(2 \times 10^{5}\right)$
3) $\left(4.8 \times 10^{2}\right) \div\left(3 \times 10^{4}\right)$

Links

Science

ALGEBRAIC EXPRESSIONS

Key Concepts

When collecting like terms involving addition or subtraction, add/subtract the numbers in front of the letters.

If the like terms are multiplied, multiply the numbers in front of the letters and put the letters next to each other.

If the like terms are divided, divide the numbers in front of the letters.

Examples

Simplify the following expressions:

1) $4 p+6 t+p-2 t=5 p+4 t$
2) $3+2 t+p-t+2=5+t+p$
3) $f+3 g-4 f=3 g-3 g$
4) $f^{2}+4 f^{2}-2 f^{2}=3 f^{2}$
5) $6 a \times 3 b \times 2 c=36 a b c$
6) $\frac{9 b}{3}=3 b$

Questions - Simplify:

1) $7 p+3 q+p-3 q$
2) $m-8 g-5 m$
3)

$5+4 t+3 p-2 t+7$
5) $2 a \times 5 b \times 4 c$
7) $\frac{36 p}{12}$
4) $\quad b^{2}-7 b^{2}+2 b^{2}$
6) $\quad 8 m \times 3 n \times 2 m$
8)
$\frac{6 t}{18}$

	$\frac{\varepsilon}{7}(8$	d ε ($/$	$u_{z} \mathrm{~m}_{8 t}$ (9	دqeot (S
z 9 ¢- (t	$8_{8}-m_{t-}$ - ε	$d \varepsilon+7 乙+2 I(Z$		Sy j SSN

Year 9

EXPRESSIONS/EQUATIONS/IDENTITIES AND SUBSTITUTION

Key Concepts

A formula involves two or more letters, where one letter equals an expression of other letters.

An expression is a sentence in algebra that does NOT have an equals sign.

An identity is where one side is the equivalent to the other side.

When substituting a number into an expression, replace the letter with the given value.

Examples

1) $5(y+6) \equiv 6 y+30$ is an identity as when the brackets are expanded we get the answer on the right hand side
2) $5 m-7$ is an expression since there is no equals sign
3) $3 x-6=12$ is an equation as it can be solved to give a solution
4) $C=\frac{5(F-32)}{9}$ is a formula (involves more than one letter and includes an equal sign)
5) Find the value of $3 x+2$ when $x=5$

$$
(3 \times 5)+2=17
$$

6) Where $A=b^{2}+c$, find A when $b=2$ and $c=3$

$$
\begin{aligned}
& A=2^{2}+3 \\
& A=4+3 \\
& A=7
\end{aligned}
$$

Questions

Key Words

Substitute Equation Formula Identity Expression

Year 9

EXPAND AND SIMPLIFY BRACKETS

Key Concepts

Expanding brackets

Multiply the number outside the brackets with EVERY term inside the brackets

Factoring expressions

Take the highest common factor outside the bracket.

Examples

Expand and simplify where appropriate
1)

$$
7(3+a)=21+7 a
$$

2) $2(5+a)+3(2+a)=10+2 a+6+3 a=5 a+16$
3) Factorise

$$
9 x+18=9(x+2)
$$

4) Factorise

$$
6 e^{2}-3 e=3 e(2 e-1)
$$

Questions

穴 hegartymaths
 $160,161,168,189$, 105, 106

Key Words
Expand

Factorise
Simplify

1) Expand and simplify
(a) $3(2-7 f)$
(b) $5(m-2)+6$
(c) $3(4+t)+2(5+t)$
2) Factorise
(a) $6 m+12 t$
(b) $9 t-3 p$
(c) $4 d^{2}-2 d$

Year 9

REARRANGE AND SOLVE EQUATIONS

Key Concepts

Solving equations:

Working with inverse operations to find the value of a variable.

Rearranging an equation:

Working with inverse operations to isolate a highlighted variable.

In solving and rearranging we undo the operations starting from the last one.

Solve:

For each step in solving an equation we must do the inverse operation

Examples

Rearrange to make r the subject of the formulae :

$$
\begin{aligned}
& Q=\frac{2 r-7}{3} \\
& \times 3 \quad \times 3 \\
& 3 \mathrm{Q}=2 r-7 \\
& +7 \quad+7 \\
& 3 Q+7=2 r \\
& \div 2 \quad \div 2 \\
& \frac{3 Q+7}{2}=r
\end{aligned}
$$

hegartymaths
 177-186, 280-284, 287

Key Words
Solve
Rearrange Term Inverse operation
4) Rearrange to make x the subject:

1) Solve $7(x+2)=35$
2) Solve $4 x-12=28$
3) Solve $4 x-12=2 x+20$

$$
y=\frac{3 x+4}{2}
$$

Year 9

EQUATIONS IN CONTEXT

Key Concepts

Algebra can be used to support us to find unknowns in a contextual problem.

We can always apply a letter to an unknown quantity, to then set up an equation.

It will often be used in area and perimeter problems and angle problems in geometry.

Solve to find the value of x when the perimeter is 42 cm .

$$
2 x+3
$$

HINT: Write on all of the lengths of
the sides.

Examples

Jane is 4 years older than Tom.
David is twice as old as Jane.
The sum of their ages is 60 .
Using algebra, find the age of each person.

$$
\begin{aligned}
& \text { Tom }=x \longrightarrow 12 \\
& \text { Jane }=x+4 \longrightarrow 12+4=16 \\
& \text { David }=2 x+8 \rightarrow(2 \times 12)+8=32 \\
& x+x+4+2 x+8=60 \\
& 4 x+12=60 \\
& 4 x=48 \\
& x=12
\end{aligned}
$$

hegartymaths

154

$3 x+5$

Key Words
Solve
Term
Inverse
operation
2) Jane is 12 years older than Jack.

Sarah is 3 years younger than Jack.
The sum of their ages is 36 .
Using algebra, find the age of each person.

