

The Grange Grander There White Grander There	Year 9 INDICES AND ROOTS				
Aspire for Excellence					
Key Concepts	Simplify each of the	he following:	Examples		
$a^m \times a^n = a^{m+n}$ $a^m \div a^n = a^{m-n}$	1) $a^6 \times a^4 = a^{6+4} = a^1$	4 0	5) $a^{-3} = \frac{1}{a^3}$	9) $\left(\frac{25}{16}\right)^{-\frac{1}{2}} = \left(\frac{16}{25}\right)^{\frac{1}{2}}$	
$(a^m)^n = a^{mn}$	2) $a^6 \div a^4 = a^{6-4}$	4	6) $2a^{-4} = \frac{2}{a^4}$	$=\sqrt{\frac{16}{25}}$	
$a^{-m} = \frac{1}{a^m}$	$= a^2$		7) $a^{\frac{1}{2}} = \sqrt[2]{a^1} = \sqrt{a}$	$=\frac{4}{\pi}$	
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$(a^{-}) = a^{-24}$		8) $a^{-\frac{1}{2}} = \frac{1}{a^{\frac{1}{2}}} = \frac{1}{\sqrt{a}}$	5	
$a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}$	4) $(3a^4)^3 = 3^3a^{4>}$ = 27 a^{12}	<3 2	u2		
A hegartymaths	Key Words	Write as a single power: $6)\frac{8^4 \times 8^5}{7} = 7)\frac{4^9 \times 4}{7}$	1) $a^3 \times a^2$ 2) $b^4 \times b$ 3) d ⁻¹	⁻⁵ × d ⁻¹ 4) m ⁶ ÷ m ² 5) n ⁴ ÷ n ⁴	
102 – 110	Powers Roots Indices	Evaluate : 1) $(3^2)^5$	2) 2^{-2} 3) $81^{\frac{1}{2}}$ 4) $\left(\frac{1}{9}\right)^{\frac{1}{2}}$	5) $16^{\frac{3}{2}}$ 6) $27^{-\frac{2}{3}}$	
	Recipiocal		יל 9) 3 2) ד 9) 8 ₃ ג) לג	1) 3^{10} 2) $\frac{1}{4}$ 3) b^{5} 3) d^{-6} 4) m^{4} ANSWERS: 1) a^{5} 3) b^{5} 3) d^{-6} 4) m^{4}	

Year 9

CALCULATIONS, CHECKING AND ROUNDING

Examples

Key Concepts

Year 9 STANDARD FORM

Examples

Key Concepts

Year 9

EXPRESSIONS/EQUATIONS/IDENTITIES AND SUBSTITUTION

Key Concepts

A **formula** involves two or more letters, where one letter equals an **expression** of other letters.

An **expression** is a sentence in algebra that does NOT have an equals sign.

An **identity** is where one side is the equivalent to the other side.

When **substituting** a number into an expression, replace the letter with the given value.

Examples 1) $5(y+6) \equiv 6y+30$ is an identity as when the brackets are expanded we get the answer on the right hand side 2) 5m - 7 is an expression since there is no equals sign 3) 3x - 6 = 12 is an equation as it can be solved to give a solution $C = \frac{5(F-32)}{2}$ is a formula (involves more than one letter and includes an equal 4) sign) Find the value of 3x + 2 when x = 55) $(3 \times 5) + 2 = 17$ Where $A = b^2 + c$, find A when b = 2 and c = 36) $A = 2^2 + 3$ A = 4 + 3A = 7 Questions 1) Identify the equation, expression, identity, formula from the list **Key Words** (b) $u^2 - 2as$ (a) v = u + atSubstitute (c) $4x(x - 2) = x^2 - 8x$ (d) 5b - 2 = 13Equation **2)** Find the value of 5x - 7 when x = 3Formula **3)** Where $A = d^2 + e$, find A when d = 5 and e = 2Identity Expression 8 (7 7 = A(E)uoitenps (b) (c) identity (p) exbression ANSWERS: 1) (a) formula

Parage Craademy With Downer from Depression Depression

Year 9 REARRANGE AND SOLVE EQUATIONS

Key Concepts

Solving equations: Working with inverse operations to find the value of a variable.

Rearranging an equation: Working with inverse operations to isolate a highlighted variable.

In solving and rearranging we **undo the operations** starting from the last one.

A hegartymaths

177-186, 287

Solve:					
7p – 5 = 3p +	3				
-3p	-3p				
4p - 5 = 3					
+5	+5				
4p = 8					
÷ 2	÷ 2				
p = 2					
Solve:					
5(x-3) = 4(x + 2)					
expand	expand				
5x - 15	5 = 4x + 8				
-4 <i>x</i>	-4 <i>x</i>				
x - 15 = 8					
+15	+15				
x	; = 23				
Key Manda					
Key words	(1) Solve 7				
Solve					
кеаггалде	2) Decret				
Ierm	3) Rearrar				
Inverse	A) Doorror				

Links

Science

Examples

ANSWERS: 1) x = 3 (A) $\frac{7}{7} = 3$ (B) x = 2 (C) x = x (L) x = 3 (C) x = 3 (C) x = 3