Year 9

POWERS AND ROOTS

戻hegartymaths
Clip Numbers
27－30，99－101

Key Words

Square：A square number is the result of multiplying a number by itself．
Cube：A cube number is the result of multiplying a number by itself twice．
Root：A root is the
reverse of a power．
Prime number：A prime is a number that has only two factors which are 1 and itself．
Reciprocal：This is
found by doing 1 divided by the number．
Factor：A number that fits into another number exactly．

Tip

A number with an odd amount of factors must be a square number．

Examples

What is 2^{4} ？
What is $\sqrt{64}$ ？

What is the reciprocal of 5 ？

$$
8^{2}=64, \text { so } \sqrt{64}= \pm 8
$$

Write 36 as a product of prime factors

Questions
1）a） 2^{5}
b） 3^{3}
c） 1^{17}
d）$\sqrt{81}$
e）$\sqrt{16}$
f）$\sqrt[3]{64}$

2）Find the reciprocal of：
a） 4
b）$\frac{1}{3}$
c） 0.25
3）Write 72 as a product of primes．

${ }_{z} \varepsilon \times{ }_{\varepsilon} Z$（ ε			$\square 0$	$\varepsilon(q$		
$\dagger(t$	† \ddagger	$6 \mp(p$	［ 0	Ľ（q	てと ${ }^{\text {e（ }}$	：Sy j MSN

Year 9

INDICES AND ROOTS

Key Concepts

$$
\begin{aligned}
a^{m} \times a^{n} & =a^{m+n} \\
a^{m} \div a^{n} & =a^{m-n} \\
\left(a^{m}\right)^{n} & =a^{m n} \\
a^{-m} & =\frac{1}{a^{m}} \\
a^{\frac{m}{n}} & =\sqrt[n]{a^{m}} \\
a^{-\frac{m}{n}} & =\frac{1}{\sqrt[n]{a^{m}}}
\end{aligned}
$$

ㅎ. hegartymaths

102-110

Simplify each of the following:

Examples

1) $a^{6} \times a^{4}=a^{6+4}$

$$
=a^{10}
$$

2) $a^{6} \div a^{4}=a^{6-4}$
3) $a^{-3}=\frac{1}{a^{3}}$
4) $\left(\frac{25}{16}\right)^{-\frac{1}{2}}=\left(\frac{16}{25}\right)^{\frac{1}{2}}$
5) $2 a^{-4}=\frac{2}{a^{4}}$

$$
=a^{2}
$$

$=\sqrt{\frac{16}{25}}$
7) $a^{\frac{1}{2}}=\sqrt[2]{a^{1}}=\sqrt{a}$

$$
=\frac{4}{5}
$$

3) $\left(a^{6}\right)^{4}=a^{6 \times 4}$
4) $a^{-\frac{1}{2}}=\frac{1}{a^{\frac{1}{2}}}=\frac{1}{\sqrt{a}}$
5) $\left(3 a^{4}\right)^{3}=3^{3} a^{4 \times 3}$

$$
=27 a^{12}
$$

Key Words

Powers
Roots
Indices
Reciprocal

Write as a single power: 1) $a^{3} \times a^{2} \quad$ 2) $b^{4} \times b \quad$ 3) $d^{-5} \times d^{-1} \quad$ 4) $m^{6} \div m^{2} \quad$ 5) $n^{4} \div n^{4}$
6) $\frac{8^{4} \times 8^{5}}{8^{6}} \quad$ 7) $\frac{4^{9} \times 4}{4^{3}}$

Evaluate : 1) $\left(3^{2}\right)^{5}$
2) 2^{-2}
3) $81^{\frac{1}{2}}$
4) $\left(\frac{1}{9}\right)^{\frac{1}{2}}$
5) $16^{\frac{3}{2}}$
6) $27^{-\frac{2}{3}}$

Year 9

CALCULATIONS, CHECKING AND ROUNDING

Key Concepts

A value of 5 to 9 rounds the number up.

A value of 0 to 4 keeps the number the same.

Estimation is a result of rounding to one significant figure.

Examples

Round 3.527 to:
a) 1 decimal place

$$
3.527 \longrightarrow 3.5
$$

Estimate the answer to the following calculation:

$$
\frac{46.2-9.85}{\sqrt{16.3+5.42}}
$$

b) 2 decimal places

$$
3.527 \longrightarrow 3.53
$$

$$
\frac{50-10}{\sqrt{20+5}}
$$

c) 1 significant figure

$$
3: 527 \longrightarrow 4
$$

$$
\frac{40}{5}=8
$$

嚅 hegartymaths

17,56,130

Key Words
Integers
Operation Negative Significant figures
Estimate

A)	Round the following numbers to the given degree of accuracy			
1)	14.1732	(1 d.p.)	2) $0.0568 \quad$ (2 d.p.)	3) 3418
(1 S.F)				
B)	Estimate:			
1) $\sqrt{4.09 \times 8.96}$	2) $25.76-\sqrt{4.09 \times 8.96}$			
3) $\sqrt[3]{26.64}+\sqrt{80.7}$	4) $\frac{\sqrt{6.91 \times 9.23}}{3.95^{2} \div 2.02^{3}}$			

Key Concepts

We use standard form to write a very large or a very small number in scientific form.

Must be $\times 10$

Must be $1 \leq a<10$

Examples

Calculate the following, write your answer in standard form:

1) $\left(3 \times 10^{3}\right) \times\left(5 \times 10^{2}\right)$

$$
\begin{aligned}
& 3 \times 5=15 \quad \quad 15 \times 10^{5} \\
& 10^{3} \times 10^{2}=10^{5} \int=1.5 \times 10^{6}
\end{aligned}
$$

2) $\left(8 \times 10^{7}\right) \div\left(16 \times 10^{3}\right)$

$$
\left.\begin{array}{l}
8 \div 16=0.5 \\
10^{7} \div 10^{3}=10^{4}
\end{array}\right\}=\begin{aligned}
& 0.5 \times 10^{4} \\
& 5 \times 10^{3}
\end{aligned}
$$

1) $3000=3 \times 10^{3}$
2) $4580000=4.58 \times 10^{6}$
3) $0.0006=6 \times 10^{-4}$
4) $0.00845=8.45 \times 10^{-3}$

Write the following in standard form:

Key Words

Standard form
Base 10
Standard form

121-129
穴hegartymaths

A) Write the following in standard form:
$\begin{array}{llll}\text { 1) } 74000 & \text { 2) } 1042000 & \text { 3) } 0.009 & \text { 4) } 0.00000124\end{array}$
B) Work out:

1) $\left(5 \times 10^{2}\right) \times\left(2 \times 10^{5}\right) \quad$ 2) $\left(4 \times 10^{3}\right) \times\left(3 \times 10^{8}\right)$
2) $\left(8 \times 10^{6}\right) \div\left(2 \times 10^{5}\right)$
3) $\left(4.8 \times 10^{2}\right) \div\left(3 \times 10^{4}\right)$

Links

Science

Year 9

EXPRESSIONS/EQUATIONS/IDENTITIES AND SUBSTITUTION

Key Concepts

A formula involves two or more letters, where one letter equals an expression of other letters.

An expression is a sentence in algebra that does NOT have an equals sign.

An identity is where one side is the equivalent to the other side.

When substituting a number into an expression, replace the letter with the given value.

Examples

1) $5(y+6) \equiv 6 y+30$ is an identity as when the brackets are expanded we get the answer on the right hand side
2) $5 m-7$ is an expression since there is no equals sign
3) $3 x-6=12$ is an equation as it can be solved to give a solution
4) $C=\frac{5(F-32)}{9}$ is a formula (involves more than one letter and includes an equal sign)
5) Find the value of $3 x+2$ when $x=5$

$$
(3 \times 5)+2=17
$$

6) Where $A=b^{2}+c$, find A when $b=2$ and $c=3$

$$
\begin{aligned}
& A=2^{2}+3 \\
& A=4+3 \\
& A=7
\end{aligned}
$$

Questions

Key Words

Substitute Equation Formula Identity Expression

Year 9

EXPANDING AND FACTORISING

Key Concepts

Expanding brackets

Where every term inside each bracket is multiplied by every term all other brackets.

Factorising expressions

Putting an expression back into brackets. To "factorise fully" means take out the HCF.

Difference of two squares
When two brackets are repeated with the exception of a sign change. All numbers in the original expression will be square numbers.

Examples

Expand and simplify:

1) $4(m+5)+3$
$=4 m+20+3$
$=4 m+23$
2)

$=p^{2}+4 p-p-2$
$=p^{2}+3 p-2$

Factorise fully:

1) $16 a t^{2}+12 a t=4 a t(4 t+3)$
2) $x^{2}-2 x-3=(x-3)(x+1)$
3) $6 x^{2}+13 x+5$
$=6 x^{2}+3 x+10 x+5$
$=3 x(2 x+1)+5(2 x+1)$
$=(3 x+5)(2 x+1)$
4) $4 x^{2}-25$

$$
=(2 x+5)(2 x-5)
$$

Key Words

Expand
Factorise fully
Bracket
Difference of two
squares
A) Expand:

1) $5(m-2)+62)(5 g-4)(2 g+1) 3)(y+1)(y-2)(y+3)$
B) Factorise:
2) $5 b^{2} \mathrm{c}-10 \mathrm{bc}$ 2) $x^{2}-8 x+15$ 3) $3 x^{2}+8 x+4$ 4) $9 x^{2}-25$

Year 9

REARRANGE AND SOLVE EQUATIONS

Key Concepts

Solving equations:

Working with inverse operations to find the value of a variable.

Rearranging an equation:

Working with inverse operations to isolate a highlighted variable.

In solving and rearranging we undo the operations starting from the last one.

Examples

Solve:

\[

\]

Solve:

$$
5(x-3)=4(x+2)
$$

expand expand

$$
5 x-15=4 x+8
$$

$$
\begin{array}{ll}
-4 x & -4 x
\end{array}
$$

$$
x-15=8
$$

$$
+15 \quad+15
$$

$x=23$

※. hegartymaths

177-186, 287

Rearrange to make r the subject of the formulae :

$$
Q=\frac{2 r-7}{3}
$$

$\times 3$

$$
\times 3
$$

$$
3 \mathrm{Q}=2 r-7
$$

$$
+7
$$

$$
+7
$$

$$
3 Q+7=2 r
$$

$$
\div 2 \quad \div 2
$$

$$
\frac{3 Q+7}{2}=r
$$

Rearrange to make c the subject of the formulae :

$$
2(3 a-c)=5 c+1
$$

expand

$$
6 a-2 c=5 c+1
$$

$$
+2 c \quad+2 c
$$

$$
6 \mathrm{a}=7 c+1
$$

-1
-1

$$
6 a-1=7 c
$$

$\div 7$

$$
\frac{6 a-1}{7}=c
$$

$$
\div 7
$$

Key Words
Solve
Rearrange
Term
Inverse
Links
Science

1) Solve $7(x+2)=5(x+4)$
2) Solve $4(2-x)=5(x-2)$
3) Rearrange to make m the subject $2(2 p+m)=3-5 m$
4) Rearrange to make x the subject $5(x-3)=y(4-3 x)$
