Year 9
 CONSTRUCTIONS

Key Concept
Line Bisector

Angle Bisector

hegartymaths Clip Numbers 660-662, 674-677

Key Words

Construction: To draw a shape, line or angle accurately using a compass and ruler.
Loci: Set of points with the same rule.
Parallel: Two lines which never intersect.
Perpendicular: Two lines that intersect at 90°.

Bisect: Divide into two parts.
Equidistant: Equal distance.

Tip

Watch for scales.
For a scale of:
$1 \mathrm{~cm}=4 \mathrm{~km}$.
$20 \mathrm{~km}=5 \mathrm{~cm}$ $6 \mathrm{~cm}=24 \mathrm{~km}$

Examples

Shade the region that is:

- closer to A than B

Line bisector of A and B

- less than 4 cm from C

Circle with radius 4 cm

Questions

1) Draw these angles then bisect them using constructions:
a) 46°
b) 18°
c) 124°
2) Draw these lines and bisect them:
a) 6 cm
b) 12 cm

Year 9

SEQUENCES

Key Concepts

Arithmetic or linear sequences
increase or decrease by a common amount each time.
Geometric series has a common multiple between each term. Quadratic sequences include an n^{2}. It has a common second difference.
Fibonacci sequences
are where you add the two previous terms to find the next term.

Linear/arithmetic sequence:

a) State the nth term

$$
\overbrace{\text { Difference }}^{3 n+1} \underset{\text { The } 0^{\text {th }} \text { term }}{3 n}
$$

b) What is the $100^{\text {th }}$ term in the sequence?

$$
\begin{gathered}
3 n+1 \\
3 \times 100+1=301
\end{gathered}
$$

c) Is 100 in this sequence?

$$
\begin{gathered}
3 n+1=100 \\
3 n=99 \\
n=33
\end{gathered}
$$

Yes as 33 is an integer.

Pattern 1 Pattern 2

Pattern 3

Examples

Linear sequences with a picture:

State the nth term.

Hint: Firstly write down the number of matchsticks in each image:

$$
7 n+1
$$

$+$| Pattern 1 | Pattern 2 | Pattern 3 |
| :---: | :---: | :---: |
| 8 | 15 | 22 |
| | | |
| -7 | +7 | |

Geometric sequence e.g.

Quadratic sequence e.g. $n^{2}+4$ Find the first 3 numbers in the sequence
First term: $1^{2}+4=5 \quad$ Third term: $3^{2}+4=13$
Second term: $2^{2}+4=8$

Pe hegartymaths 198,
 247-250, 264

Key Words Linear
Arithmetic
Geometric
Sequence
Nth term

1) $1,8,15,22, \ldots$.
a) Find the nth term
b) Calculate the $50^{\text {th }}$ term
c) Is 120 in the sequence?
2) $n^{2}-5$ Find the first 4 terms in this sequence

Year 9

 INEQUALITIES
Key Concepts

Inequalities show the range of numbers that satisfy a rule.
$x<2$ means x is less than 2
$x \leq 2$ means x is less than or equal to 2
$x>2$ means x is greater than 2
$x \geq 2$ means x is greater than or equal to 2

On a number line we use circles to highlight the key values:is used for less/greater than
is used for less/greater than or equal to

Examples

a) State the values of n that satisfy:

$$
-2<n \leq 3
$$

Cannot be equal to 2 Can be equal to 3

$$
-1,0,1,2,3
$$

b) Show this inequality on a number line:

Solve this inequality and represent your answer on a number line:

Solve this inequality and represent your answer on a number line:
$4<3 x+1 \leq 13$
$-1 \quad-1$
$3<3 x \leq 12$
$\div 3 \quad \div 3$
$1<x \leq 4$

Key Words
Inequality
Greater than
Less than
Represent
Number line

1) State the values of n that satisfy: $-3 \leq n<2$
2) Solve $4 x-2 \leq 6$ and represent your answer on a number line
3) Solve $5<2 x+3 \leq 9$ and represent your answer on a number line

Year 9

REARRANGE AND SOLVE EQUATIONS

Key Concepts

Solving equations:

Working with inverse operations to find the value of a variable.

Rearranging an equation:
Working with inverse operations to isolate a highlighted variable.

In solving and rearranging we undo the operations starting from the last one.

Solve:

Examples

Rearrange to make r the subject of the formulae :

$$
Q=\frac{2 r-7}{3}
$$

$$
\times 3 \quad 3 Q=2 r-7^{\times 3}
$$

$$
+7 \quad+7
$$

$$
3 Q+7=2 r
$$

$$
\div 2 \quad \div 2
$$

$$
\frac{3 Q+7}{2}=r
$$

定 hegartymaths
177-186,
280-284,

1) Solve $7(x+2)=35$
2) Solve $4 x-12=28$
3) Solve $4 x-12=2 x+20$
4) Rearrange to make x the subject:

$$
y=\frac{3 x+4}{2}
$$

DIRECT AND INVERSE PROPORTION USING ALGEbRA

Key Concepts

Variables are directly proportional when the ratio is constant between the quantities.

Variables are inversely proportional when one quantity increases in proportion to the other decreasing.
α is the symbol we use to show that one variable is in proportion to another.

Direct proportion: $\boldsymbol{y} \propto \boldsymbol{x}$

Inverse proportion: $\quad \boldsymbol{y} \propto \frac{\mathbf{1}}{\boldsymbol{x}}$

Examples

Direct proportion:

g is directly proportional to the square root of h When $g=18, h=16$
Find the possible values of h when $g=2$

$$
\begin{array}{cc}
g \propto \sqrt{h} & g=4.5 \sqrt{h} \\
g=k \sqrt{h} & \text { When } g=2 \\
18=k \sqrt{16} & 2=4.5 \sqrt{h} \\
18=4 k & \frac{2}{4.5}=\sqrt{h} \\
4.5=k & \left(\frac{4}{9}\right)^{2}=h \\
g=4.5 \sqrt{h} & \frac{16}{81}=h
\end{array}
$$

Inverse proportion:

The time taken, t , for passengers to be checked-in is inversely proportional to the square of the number of staff, s, working.
It takes 30 minutes passengers to be checked-in when 10 staff are working. How many staff are needed for 120 minutes?

$$
\begin{array}{cc}
t \propto \frac{1}{s^{2}} & t=\frac{3000}{s^{2}} \\
t=\frac{k}{s^{2}} & 120=\frac{3000}{s^{2}} \\
30=\frac{k}{10^{2}} & s^{2}=\frac{3000}{120} \\
3000=k & s^{2}=25 \\
t=\frac{3000}{s^{2}} & s=\sqrt{25} \\
\hline
\end{array}
$$

hegartymaths

343-345, 346-348

Key Words
Direct
Inverse
Proportion
Divide
Multiply
Constant

1) e is directly proportional to f When $e=3, f=36$
Find the value of f when $e=4$
2) x is inversely proportional to the square root of y.
When $x=12, y=9$
Find the value of x when $y=81$

$$
t=x(乙 \quad 8 t=f(\tau \text { Sy } \exists M S N \forall
$$

