Year 9

CONSTRUCTIONS AND LOCI

Key Concepts

Line bisector

Angle bisector

定hegartymaths 683,
660-665,
674-679

Examples

There are two burglar alarm sensors, one at A and one at B .

The range of each sensor is 4 m .

The alarm is switched on.

Is it possible to walk from the front door to the patio door without setting off the alarm?

Year 9 SEQUENCES

Key Concepts

Arithmetic sequences
increase or decrease by a common amount each time.

Quadratic sequences have a common $2^{\text {nd }}$ difference.

Fibonacci sequences
Add the two previous terms to get the next term

Geometric series has a common multiple between each term

Linear sequences:

$4,7,10,13,16$.....
a) State the nth term $3 n+\frac{1}{r}$
Difference The $0^{\text {th }}$ term
b) What is the $100^{\text {th }}$ term in the sequence?
$3 n+1$

$$
3 \times 100+1=301
$$

c) Is 100 in this sequence?

$$
\begin{gathered}
3 n+1=100 \\
3 n=99 \\
n=33
\end{gathered}
$$

Yes as 33 is an integer.

Quadratic sequences:

$$
a+b+c \quad 3 \quad 9 \quad 19 \quad 33 \quad 51
$$

$$
\begin{array}{lllllll}
3 a+b & & 6 & 10 & 14 & 18 & \text { First difference }
\end{array}
$$

$$
\begin{array}{lllll}
2 a & 4 & 4 & 4 & \text { Second difference }
\end{array}
$$

$$
\begin{array}{ccc}
2 a=4 & 3 a+b=6 & a+b+c=3 \\
a=2 & 3 \times 2+b=6 & 2+0+c=3 \\
b=0 & c=1
\end{array}
$$

Key Words Linear Quadratic Arithmetic Geometric Sequence Nth term
A) $1,8,15,22, \ldots$.

1) Find the nth term
b) Calculate the $50^{\text {th }}$ term
c) Is 120 in the sequence?
B) Find the nth term for:
2)

$5,12,23,38,57, \ldots$
2) $3,11,25,45,71, \ldots$

Year 9

 INEQUALITIES
Key Concepts

Inequalities show the range of numbers that satisfy a rule.
$x<2$ means x is less than 2
$x \leq 2$ means x is less than or equal to 2
$x>2$ means x is greater than 2
$x \geq 2$ means x is greater than or equal to 2

On a number line we use circles to highlight the key values:is used for less/greater than
is used for less/greater than or equal to

Examples

a) State the values of n that satisfy:

$$
-2<n \leq 3
$$

Cannot be equal to 2 Can be equal to 3

$$
-1,0,1,2,3
$$

b) Show this inequality on a number line:

Solve this inequality and represent your answer on a number line:

Solve this inequality and represent your answer on a number line:
$4<3 x+1 \leq 13$
$-1 \quad-1$
$3<3 x \leq 12$
$\div 3 \quad \div 3$
$1<x \leq 4$

Key Words
Inequality
Greater than
Less than
Represent
Number line

1) State the values of n that satisfy: $-3 \leq n<2$
2) Solve $4 x-2 \leq 6$ and represent your answer on a number line
3) Solve $5<2 x+3 \leq 9$ and represent your answer on a number line

Year 9

REARRANGE AND SOLVE EQUATIONS

Key Concepts

Solving equations:

Working with inverse operations to find the value of a variable.

Rearranging an equation:
Working with inverse operations to isolate a highlighted variable.

In solving and rearranging we undo the operations starting from the last one.

Solve:

Examples

Rearrange to make r the subject of the formulae :

$$
Q=\frac{2 r-7}{3}
$$

$$
\times 3 \quad 3 Q=2 r-7^{\times 3}
$$

$$
+7 \quad+7
$$

$$
3 Q+7=2 r
$$

$$
\div 2 \quad \div 2
$$

$$
\frac{3 Q+7}{2}=r
$$

定 hegartymaths
177-186,
280-284,

1) Solve $7(x+2)=35$
2) Solve $4 x-12=28$
3) Solve $4 x-12=2 x+20$
4) Rearrange to make x the subject:

$$
y=\frac{3 x+4}{2}
$$

DIRECT AND INVERSE PROPORTION USING ALGEbRA

Key Concepts

Variables are directly proportional when the ratio is constant between the quantities.

Variables are inversely proportional when one quantity increases in proportion to the other decreasing.
α is the symbol we use to show that one variable is in proportion to another.

Direct proportion: $\boldsymbol{y} \propto \boldsymbol{x}$

Inverse proportion: $\quad \boldsymbol{y} \propto \frac{\mathbf{1}}{\boldsymbol{x}}$

Examples

Direct proportion:

g is directly proportional to the square root of h When $g=18, h=16$
Find the possible values of h when $g=2$

$$
\begin{array}{cc}
g \propto \sqrt{h} & g=4.5 \sqrt{h} \\
g=k \sqrt{h} & \text { When } g=2 \\
18=k \sqrt{16} & 2=4.5 \sqrt{h} \\
18=4 k & \frac{2}{4.5}=\sqrt{h} \\
4.5=k & \left(\frac{4}{9}\right)^{2}=h \\
g=4.5 \sqrt{h} & \frac{16}{81}=h
\end{array}
$$

Inverse proportion:

The time taken, t , for passengers to be checked-in is inversely proportional to the square of the number of staff, s, working.
It takes 30 minutes passengers to be checked-in when 10 staff are working. How many staff are needed for 120 minutes?

$$
\begin{array}{cc}
t \propto \frac{1}{s^{2}} & t=\frac{3000}{s^{2}} \\
t=\frac{k}{s^{2}} & 120=\frac{3000}{s^{2}} \\
30=\frac{k}{10^{2}} & s^{2}=\frac{3000}{120} \\
3000=k & s^{2}=25 \\
t=\frac{3000}{s^{2}} & s=\sqrt{25} \\
\hline
\end{array}
$$

hegartymaths

343-345, 346-348

Key Words
Direct
Inverse
Proportion
Divide
Multiply
Constant

1) e is directly proportional to f When $e=3, f=36$
Find the value of f when $e=4$
2) x is inversely proportional to the square root of y.
When $x=12, y=9$
Find the value of x when $y=81$

$$
t=x(乙 \quad 8 t=f(\tau \text { Sy } \exists M S N \forall
$$

Year 9

DIRECT AND INVERSE PROPORTION ON GRAPHS

Key Concepts

Variables are directly proportional when the ratio is constant between the quantities.

Variables are inversely proportional when one quantity increases in proportion to the other decreasing.

Direct and inverse proportion can also be represented on graphs.

y is directly proportional to x

y is directly proportional to x^{2}

y is inversely proportional to x

y is inversely proportional to x^{2}

ㅇ, hegartymaths

340, 348

Key Words
Direct
Inverse
Proportion
Graph

Match the correct graph
to each statement:

