Year 9

PERIMETER AND CIRCUMFERENCE

Key Concepts

Parts of a circle

Circumference

 of a circle is calculated by πd and is the distance around the circle.

Arc length of a sector is calculated by $\frac{\theta}{360} \pi d$.

Calculate:
a) Circumference

$\mathrm{C}=\pi \times 4$
$=4 \pi$
or $=12.57 \mathrm{~cm}$
b) Diameter when the circumference is 20 cm

$$
\begin{aligned}
\mathrm{C} & =\pi \times d \\
20 & =\pi \times d \\
\frac{20}{\pi} & =d
\end{aligned}
$$

$$
\text { Or } 6.37 \mathrm{~cm}
$$

Examples
c) Perimeter

$$
\begin{aligned}
& P=\frac{\pi \times d}{2}+d \\
& P=\frac{\pi \times 6}{2}+6 \\
& P=3 \pi+6 \\
& \text { Or }=15.42 \mathrm{~cm}
\end{aligned}
$$

d) Arc length

Arc $=\frac{\theta}{360} \times \pi \times d$

Arc $=\frac{28}{360} \times \pi \times 2 \times 10$
Arc $=\frac{28}{360} \times \pi \times 20$
Arc $=\frac{14}{9} \pi$
Or $=4.89 \mathrm{~cm}$

Key Words Circle Perimeter Circumference Radius Diameter Pi Arc

Calculate:

1) The circumference of a circle with a diameter of 12 cm
2) The diameter of a circle with a circumference of 30 cm
3) The perimeter of a semicircle with diameter 15 cm
4) The arc length of the diagram

541,
544-545

Year 9

AREA OF CIRCLES AND PART CIRCLES

Key Concepts

The area of a circle is calculated by πr^{2}

The area of a sector is calculated by $\frac{A}{360} \pi r^{2}$

Calculate:
a) Area

$$
\begin{aligned}
\mathrm{A} & =\pi \times 3^{2} \\
& =9 \pi \\
\text { or } & =28.3 \mathrm{~cm}^{2}
\end{aligned}
$$

b) Radius when the area is $20 \mathrm{~cm}^{2}$
$\begin{aligned} \mathrm{A} & =\pi \times r^{2} \\ 20 & =\pi \times r^{2} \quad \sqrt{\frac{20}{\pi}}=r \\ \frac{20}{\pi} & =r^{2} \quad \text { Or } 2.52 \mathrm{~cm}\end{aligned}$

Examples

c) Area

$$
P=\frac{\pi \times r^{2}}{2}
$$

$$
P=\frac{\pi \times 6^{2}}{2}
$$

$$
P=18 \pi
$$

$$
\mathrm{Or}=56.55 \mathrm{~cm}^{2}
$$

d) Area of a sector
$\mathrm{Arc}=\frac{\theta}{360} \times \pi \times r^{2}$
$\operatorname{Arc}=\frac{28}{360} \times \pi \times 10^{2}$
$\operatorname{Arc}=\frac{28}{360} \times \pi \times 100$
Arc $=\frac{70}{9} \pi$
Or $=24.43 \mathrm{~cm}$

Key Words Circle

Calculate:

1) The area of a circle with a radius of 9 cm
2) The radius of a circle with an area of $45 \mathrm{~cm}^{2}$
3) The area of a semicircle with diameter of 16 cm
4) The area of the sector in the diagram

Radius
Diameter

Year 9

PYTHAGORAS AND TRIGONOMETRY

Key Concepts

Pythagoras' theorem and basic trigonometry both only work with right angled triangles.

Pythagoras' Theorem - used to find a missing length when two sides are known $a^{2}+b^{2}=c^{2}$
c is always the hypotenuse (longest side)

Basic trigonometry SOHCAHTOA -

used to find a missing side or an angle

Pythagoras' Theorem

Examples

$\sin x=\frac{8}{10}$

$$
x=\sin ^{-1}\left(\frac{8}{10}\right)=53.1^{\circ}
$$

$$
\cos 48=\frac{x}{38}
$$

$$
x=38 \times \cos 48=25.4 m
$$

良 hegartymaths

 498-499,$509-515$

Key Words
Right angled triangle Hypotenuse
Opposite Adjacent Sine
Cosine
Tangent

Questions

Find the value of x.
a)

b)

c)

d)

3D SHAPES, CAPACITY AND VOLUME

Key Concept

Edges-12
Vertices - 8
Hexagonal Prism

Faces-8
Edges-18
Vertices - 12

Faces-6 Edges-12
Vertices - 8
Triangular Prism

Faces - 5
Edges-9
Vertices-6

은 hegartymaths

Clip Numbers

 568-571, 698,699Key Words
Volume: The amount of space that an object occupies.
Capacity: The amount of space that a liquid occupies.
Cuboid: 3D shape with 6 square/rectangular faces.
Vertices: Angular points of shapes.
Face: A surface of a 3D shape.
Edge: A line which connects two faces on 3D shape.

Tip

Remember the units are cubed for volume.

Formula

Cuboid Volume $=l \times w \times h$
Prism Volume $=$
area of cross section \times length

Examples

$$
\text { Volume }=4 \times 9 \times 2
$$

$$
=72 \mathrm{~cm}^{3}
$$

Questions
Find the volume of these shapes: 1)

Year 9

VOLUME AND SURFACE AREAS OF CYLINDERS

Key Concepts

A cylinder is a prism with the cross section of a circle.

The volume of a cylinder is calculated by $\pi r^{2} h$ and is the space inside the 3D shape

The surface area of a cylinder is calculated by $2 \pi r^{2}+\pi d h$ and is the total of the areas of all the faces on the shape.

hegartymaths

572, 586

From the diagram calculate:

Examples

b) Surface Area - You can use the net of the shape to help you

Area of two circles

$$
=2 \times \pi \times r^{2}
$$

a) Volume
$V=\pi \times r^{2} \times h$
$=2 \times \pi \times 4^{2}$

$$
=32 \pi
$$

$V=\pi \times 4^{2} \times 10$

$$
\begin{aligned}
V & =160 \pi \\
\text { Or } & =502.65 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { Surface Area } & =32 \pi+80 \pi \\
& =112 \pi \\
\text { or } & =351.86 \mathrm{~cm}^{3}
\end{aligned}
$$

Key Words Cylinder Surface Area Radius Diameter

Calculate the volume and surface area of this cylinder

Year 9

 BOUNDARIES
Key Concepts

The boundaries of a number derive from rounding.
E.g. State the boundaries of 360 when it has been rounded to 2 significant figures:

$$
355 \leq x<365
$$

E.g. State the boundaries of 4.5 when it has been rounded to 2 decimal place:

$$
4.45 \leq x<4.55
$$

These boundaries can also be called the error interval of a number.

	+	-	\times	\div
Upper bound answer	$\mathrm{UB}_{1}+\mathrm{UB}_{2}$	$\mathrm{UB}_{1}-\mathrm{LB}_{2}$	$\mathrm{UB}_{1} \times \mathrm{UB}_{2}$	$\mathrm{UB}_{1} \div \mathrm{LB}_{2}$
Lower bound answer	$\mathrm{LB}_{1}+\mathrm{LB}_{2}$	$\mathrm{LB}_{1}-\mathrm{UB}_{2}$	$\mathrm{LB}_{1} \times \mathrm{LB}_{2}$	$\mathrm{LB}_{1} \div \mathrm{UB}_{2}$

Examples

When completing calculations involving boundaries we are aiming to find the greatest or smallest answer.

A restaurant provides a cuboid stick of butter to each table. The dimensions are 30 mm by 30 mm by 80 mm , correct to the nearest 5 mm . Calculate the upper and lower bounds of the volume of the butter.

$$
\begin{aligned}
\text { Volume } & =l \times w \times h \\
\text { Upper bound } & =32.5 \times 82.5 \times 32.5 \\
& =87140.63 \mathrm{~mm}^{3} \\
\text { Lower bound } & =27.5 \times 77.5 \times 27.5 \\
& =58609.38 \mathrm{~mm}^{3}
\end{aligned}
$$

1) Jada has 100 litres of oil, correct to the nearest litre.

The oil is poured into tins of volume 1.5 litres, correct to one decimal place.
Calculate the upper and lower bounds for the number of tins that can be filled.
2) There are 110 identical marbles in a bag. A marble is taken and weighed as 15.6 g to the nearest tenth of a gram. Find the upper and lower bounds for the weight of all the marbles.

