Year 9

PYTHAGORAS AND TRIGONOMETRY

Key Concepts

Pythagoras' theorem and basic trigonometry both only work with right angled triangles.

Pythagoras' Theorem - used to find a missing length when two sides are known

$$
a^{2}+b^{2}=c^{2}
$$

c is always the hypotenuse (longest side)

Basic trigonometry SOHCAHTOA -

used to find a missing side or an angle

Pythagoras' Theorem

Examples

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
6^{2}+8^{2} & =x^{2} \\
100 & =x^{2} \\
\sqrt{100} & =x \\
10 & =x
\end{aligned}
$$

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
y^{2}+8^{2}=12^{2} \\
y^{2}=12^{2}-8^{2} \\
y^{2}=80 \\
y=\sqrt{80} \\
y=8.9
\end{gathered}
$$

$$
\cos 48=\frac{x}{38}
$$

$$
x=38 \times \cos 48=25.4 m
$$

完 hegartymaths

498-499,
509-515

Key Words
Right angled triangle Hypotenuse
Opposite Adjacent Sine
Cosine
Tangent

Questions

Find the value of x.
a)

b)

c)

d)

Year 9

3D TRIGONOMETRY

The plane of a cuboid is a flat 2 dimensional surface. An example of a plane is ABCD.
An example of a diagonal in a cuboid is FD.

Examples

Calculate the length BD:

Calculate the length FD:

Calculate the angle between FD and the plane $A B C D$:

hegartymaths

 505-507

1) Calculate the length $A C$
2) Calculate the length $A H$
3) Calculate the angle between AH and the plane $A B C D$.

Year 9

FOUR RULES OF CONGRUENCE

Key Concepts

Congruent triangles are triangles that have the same size and shape. This means that the corresponding sides are equal and the corresponding angles are equal.

There are four rules of congruency that prove whether a triangle is congruent or not.

Examples

SSS $=3$ sides on triangle A are equal to those on triangle B

ASA $=2$ angles with the included side on triangle A are equal to those on triangle B

SAS $=2$ sides with the included angle on triangle A are equal to those on triangle B

RHS = When the hypotenuse and another side on triangle A are equal to those on triangle B
¢ ${ }^{\circ}$ hegartymaths
680-682, 684-690

Prove that triangle $A C D$ and $A B C$ are congruent to one another.

Year 9 SIMILARITY - LENGTHS

Key Concepts

Similar shapes are an enlargement of one another.

A scale factor is used, whereby all lengths are multiplied by the same number.

When finding a missing length on the larger shape we multiply by the scale factor.

When finding a missing length on the smaller shape we divide by the scale factor.

Examples

$$
\begin{array}{rlrl}
\text { Scale factor }=\frac{12}{9} & x+6 & =6 \times \frac{4}{3} \\
=\frac{4}{3} & x+6 & =8 \\
x & =8-6 \\
& x & =2 \mathrm{~cm}
\end{array}
$$

定hegartymaths

608-614

Enlarge Length

1) Calculate the length of:
a) PR
b) $B C$

2) Calculate the length of:
a) $C D$
b) $E D$

Year 9
 SIMILARITY - LENGTHS, AREA AND VOLUME

Key Concepts

Similar shapes are an enlargement of one another.

Length, area and volume scale factors are all linked.

Example:

Length scale factor $=2$
Area scale factor $=2^{2}$
Volume scale factor $=2^{3}$

The volume of cylinder A is $80 \mathrm{~cm}^{3}$. Calculate the volume of cylinder B.

$$
\begin{aligned}
\text { Length scale factor } & =\frac{6}{4} \\
& =1.5
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume of } B & =80 \times 1.5^{3} \\
& =270 \mathrm{~cm}^{3}
\end{aligned}
$$

Examples

4 cm

The total surface area of cylinder P is $90 \mathrm{~cm}^{2}$. The total surface area of cylinder Q is $810 \mathrm{~cm}^{2}$. Calculate the length of Q .

$$
\begin{array}{rlr}
\text { Area scale factor } & =\frac{810}{90} & \\
& =9 & \text { Lengthof } Q=4 \times 3 \\
& =12 \mathrm{~cm} \\
\text { Length scale factor } & =\sqrt{9} &
\end{array}
$$

\%, hegartymaths

615-621

The total surface area of cone P is $24 \mathrm{~cm}^{2}$.
The total surface area of cone Q is $96 \mathrm{~cm}^{2}$.

1) Calculate the height of Q
2) If the volume of Q is $80 \mathrm{~cm}^{3}$, what is the volume of P ?

Key Words
Similar
Scale factor
Enlarge
Length
Area
Volume

Year 9
 CONSTRUCTIONS

Key Concept
Line Bisector

Angle Bisector

hegartymaths Clip Numbers 660-662, 674-677

Key Words

Construction: To draw a shape, line or angle accurately using a compass and ruler.
Loci: Set of points with the same rule.
Parallel: Two lines which never intersect.
Perpendicular: Two lines that intersect at 90°.

Bisect: Divide into two parts.
Equidistant: Equal distance.

Tip

Watch for scales.
For a scale of:
$1 \mathrm{~cm}=4 \mathrm{~km}$.
$20 \mathrm{~km}=5 \mathrm{~cm}$ $6 \mathrm{~cm}=24 \mathrm{~km}$

Examples

Shade the region that is:

- closer to A than B

Line bisector of A and B

- less than 4 cm from C

Circle with radius 4 cm

Questions

1) Draw these angles then bisect them using constructions:
a) 46°
b) 18°
c) 124°
2) Draw these lines and bisect them:
a) 6 cm
b) 12 cm
